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Summary

Using methods which have been employed for obtaining bounds
on continuous failure distributions, bounds on lattice distributions
are derived under the increasing (decreasing) failure rate assumptions,
The discrete bounds are convenient in a number of applications such

as life table analysis and reliability theory.




1, Introduction

A discrete distribution of a random variable X 1is called
a lattice distribution if there exist real numbers & and h > O
such that every possible value of X can be represented in the
form a + kh , where k runs through integer values, We call h
the span of the distribution, The geometric, binomial and Poisson
distributions are important examples of lattice distributions,

It seems that there is essentially no literature on Chebyshev
type bounds for lattice distributions, Of course, the classical
Chebyshev bounds are attained by discrete distributions, However,
these need not be lattice. The general method used by Karlin and
Studden and others (12, 11] for obtaining Chebyshev type bounds
can, of course, in theory be applied to lattice distributions, However,
we will restrict ourselves to a special class of lattice distributions
where these methods do not provide sharp bounds,

For convenience assume that & = 0 , h =1 and let
P, ™ P(Xx = k] ; (k = 0,1,2,....) . Define the failure rate r(k)

for lattice distributions as

r(k) = = if pJ >0
Zp Jmk
Juic
k-1
and note that O r(k)¢ 1. Let F(k) = I P, and F(k) =
w J=0
1 -Fk)s= Z pJ . We say that F 1is lattice IFR (lattice DFR)
J=k
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1f and only if r(k) 1is non-decreasing (non-increasing) in k .
Note that it is shown in [3] that F is lattice IFR (lattice DFR)
1£f log F(k) 1s concave (convex), Further equivalent definitions
of lattice IFR (lattice DFR) distributions in terms of Pdlya
frequency function of order two and total positivity of order two have
been discussed in [1,%2,3,10]. Note that the.negative binomial
distribution
k-1 ) @ k-a
P " (a_l)p (1-p) i a>o

k =0,1,2,....
is lattice IFR (increasing fsilure rate) for a > 1 and lattice DFR
(decreasing failure rate) for a¢ 1 . For a =1, it is the
geometric distribution with a constant fallure rate and hence it
belongs to both IFR and DFR classes, The geometric distribution
is the only distribution with this property in the discrete case,
The binomial and Poisson distributions are lattice IFR,

Lattice distributions occur naturally ir many applications,
Fatigue falilure data obtained under dyramic loading is commonly
recorded in terms of the number of cycles to failure, For meny
structures subject to fatigue failure, a lattice IFR distribution
would seem appropriate., A mathematical model describing such types
of failure has been discussed in [5]. As another example we mention
human mortality dats where it is common to record time of death
to the nearest year or the nearest month, For certain types of
cancer mortality deta a decreasing failure rate seems appropriate, (4].

In any situation where grouped data is derived from a continuous

IFR(DFR) distribution, a iattice IFR (lattice DFR) distribution will be

appropriate,
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2. Bounds on Lattice Distributions

2.1 IFR Bound:

Let F denote a left continuous distribution function such
that F(0")= O . Bounds on 1-F under the IFR (DFR) assumption in
the continuous case when the first moment by is given can be

found in (2], In the IFR case, the lower bound is given by Theorem 1.
Theorem 1: Let F be a left continuous distribution, Let F
be IFR with mean b o then

t
H1 t <

Ft) > ‘—e
<I_O H tZul .

The inequality is sharp.
A similar bound exists for lattice distributions and we shall

discuss this after proving the following lemma,

Lemma : Let F be a lattice distribution with mean “1 . Assume

k _
that F is IFR and let 5 = Z F(41) then for t <y
im]
_ k
- = F(¢t-
(1) F(t) > F(t-k) (1 - -LQBL— > ; k=1,2,,,.,t-1 .,
Hy 7" Ttk-l
Proof: We shall prove (1) by induction, By definitionm,
x [« ]
F(k) = X P, » 80 that log F(k) = log ( Z pi) . Note that the
i=k i=k

fuuction log F(k) 1s defined only for integer values, By linear

interpolation we can define log f(k) for any real value of k as

shown in Figure 2,1,
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Since we assume that F 1s IFR, it follows that log F(k)

18 concave, Hence there exists a supporting line to log F(k) as

shown in Figure 2,1.

2
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Log F(k)
A

Li+t

FIGURE 2.1 SHOWING SUPPORTING LINE FOR LOG F (k)

-b-

S e ]



Thus by log concavity, we have

log F(k) < (L, L )k - 1L, _+ (141)L

i i+l i

But L, ™ log F(1) and L = log F(1+1) , therefore

1+1

- = i+l
Flk) 2 [ F(i+1)| [F(1)] for k = 1,1+1,...

F(1) - (Fia))!
Let s =TF(1) + F(2) +...+ F(k) where s, 20 . Then ve have
o i-1 ®
b m ) F = ) F) e ) P
k=l k=1 k=i
v [ Faen] Rt
2oy
© -1
.81-1+F(1) Z{ li_‘(ﬂ'lf .
ket (V)
FL)
1 -
Thus ) < 8 ; + ) . Sclving for F(i+l) , we
obttain
F2
(2) F(1+41) > F(1) - -S%l--
M™%

From (2) with 4iat-1 , it follows that (1) holds for k = 1 ,

assume that (1) 1s true for k=n-1 ; (n¢ t) i.e,;

= n-1
(3) F(t) > F(t-n+l) (i - Eﬁi§2i£1-> = ¢(F(t-n+l)

ul- t-n

where @(x) = x(L - " X )n-l .

-t

1 t-n

; k=1,1+41,,,

Now



Note that @'(x) = 1 5

o) N

-8
>0 if xgu-l—;l—t'—“ :
K-8, _
To Show: xgi{'—g

M "8¢on

By definition x = F(t-n+l) <1, hence ve need only show - 21.
W, -8 u.l -t+n
~1_ton 21 since t ¢ Hy

n

But 8y.n < t-n laplies
by assumption,
Thus we can substitute for F(t-n+l) 1in (3) the bound given

by (2) with i=t-n and obtain

F(t-n) ( - M

- - F "84 .n.
F(t) > F(t-n) ( —ﬁ%ﬂ— > i = - "17%-n
b1 "8¢-n-1 H)"B¢-n
Noting s =8 + F(t-n) and letting c¢ =1 - F(t-n
t-u t-n-1 -8 ¢
l‘11 t-n-1

the above inequality becomes

- _ o -1

(1 - M)
K1 "®¢-n-1
p‘1“81:.-n

L. M1 ™%¢-n-1 a

F(t) > Flt-n) c

02 n-l
= F(t-n) c [ — ]n = Cnl?(t-n) .

This 1s (1) for k = n , and the induction is complete,

Theorem 2: If F(t) 1is a lattice IFR distribution with mean
(- <]

w 21 placing mass p 8t k=0,1,2,... end F(t) = Z P, ; then
kst




- t

F(t) 2 Q—-ﬂ%—) for t <Hy
ul-ml] for t = [ul] +1
1, =[]
0] for t > [”1] +1

Where [u,l] denotes the ¢ -eatest integer contained in “1 . The

inequality is sharp.

Proof: Since log F(k) is concave in k and noting figure 2,1

for 1i=0 , ve see that

log F(k) ¢ Lk

or F(k) ¢ [FQ)]
P ) _ K _
Thus , = Z Fk) < z (F1)] = _F_QL
kel kal 1-FQ1)
!

(k) or F()> T,

Now consider (1) with kst-1 ; this gives

- -1
F(t) > F(1) [ 1 -—S_fu— T = y(F(1))

Note that ¢'(x) = (1- &l)t'e(l- %) 20 1if ¢t 3“1 and p 21
(since x ¢ 1) , and thus from (L), we have

- f t

F(t) > w(lTllJl) = ( I':lq) for  t g
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This bound for ¢t 5-“1 is attained by the geometric distribution; {i.e,,

k
1 !
% lﬂ].l (]T‘ll) » k-O,l,?,... .
We conjecture that
M-l )

_ for t = [uI] +1
F(t) 2 < 1oy =(n]

0 for t> [ull +1

by

where [ull denotes the greatest integer contained in ul .

For t> ﬁil] +1 , it 18 easily seen that the bound is attained by

—

1 ; t byl
_ =[]
G(t) = ¢ ilo! ; te )+l
1+{p, ]
| 0 3 t>[ﬁ]+l

The upper bound on 1-F for the continuous distribution when F

is IFR is given by the following theorem,

Theorem 3: Let F denote a left contimuous distribution, Assume

that F 1is IFR with mean W o then

F(t) {l SR
F(t) ¢
e, > My

where w depends on t and satisfies l-wpl = e-wt . The inequality

is sharp [2] .




R e B £ T

An analogous bound exists for lattice distributions and is given by

Theorem L: let F denote a lattice distribution, Assume that

F 1is IFR with mean " then

- 1 ; tu
F(t)g{ &
q ’ t>ul

t
i<
wvhere q depends on t and satisfies q(I:%—) = The inequality
is sharp,
Proof': Let us define,

= - q ; k =0,1,2,...,t
G(k) =
0 3 k>t .

-10-
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k Log q = Log G (k)

———————————— —— ————— — — — —— —

FIGURE 2.2 LOGARITHMIC CURVE OF THE FUNCTIONS F(k) AND G(K
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Note that log G(k) 1is linear and log F(k) is concave,
hence F(k) can cross G(k) at most once for k <t

It t> My o ve can always determine q 8o that

z Ge) = )

k=l
t

k
or Zq = W

k=l

t
or q(]l_—::—) =" which is sclvable for q .

Since, F(k) and G(k) are distribution functions with the same
mean p, they must cross at least once for 0 k {t .,

Thus, for this choice of q , F(k) necessarily crosses qk
exactly once from above for O ¢ k ¢ t . Therefore, f(t) < qt
unless F coincides identically with G , The degenerate distribution
concentrating at My provides the upper bound for t gul when
by is an integer,

Since G 1s also IFR, the bound is sharp.

2.2 DFR Bound:

It is shown in [2] that the sharp lower bound on 1-F where F
is a left continuous DFR distribution with known mean, say My is zero

and the sharp upper bound is given by the following theorem,

Theorem 5: Let F be left continuous., Assume that F

is DFR vith mean Wy o then

-12-



-t
e M1 ; t<p‘l

Ft)¢ < we
3 A e

The inequality is sharp,
Similarly, for lattice distributions the sharp lower bound on
1-F where F 1is a lattice DFR distribution with known mean Wy

is zero, For example, consider

0 , k<O
Gk) = <«
aq , k-o’l ’ 2’.0.! &

where a 1s arbitrarily small and 0<q¢ 1l ., Choose q such that
G has mean My Then G 1is DFR with a jump at the origin and
G(k) < a forall k=0,1,2,,.. . Letting a -+ O, we see that the
sharp lower bound is zero,

Thus, for lattice DFR distributions only the upper bound on

F(t) is given.

Theorem 6: Let F be a lattice distribution, Assume that F 1is
DFR with mean Wy o then
™~
K t
(—l-l) §  t<
f— + )
Fit)g < ™ "

2=l 40 A
Gy Qs taw

The inequality is sharp.
-13-
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00
Proof': By definition, F(k) = I p, .
— J

Jmk
We remark that the function log F(k) is defined only for integer
values, By linear interpolation, we can define log f(k) for any
real value of k as shown in figure 2, 3,

Since we assume that F 1s DFR, it follows that log F(k) is

convex, and therefore, there exists a supporting line to log f(k),

say,at k = v ,

-14-




y=Log F(k)

FIGURE 2.3 SHOWING SUPPORTING LINE FOR DFR DISTRIBUTION
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Let a denote the intersection of the supporting line with y-axis

and let L = log F(t) . Obviously, L¢ a< O and the equation of

L.k
‘1. supporting line is y = (F-) + @ . Thus we have,

= k
(5) 1ogF(k)z(I%‘i +a ; k>0
SO (52
or F(k) > e
[
ak+Q Lo
Hence, iy 2 Z e where 8= =
kal
a+a ea(k-l)
ae
k=l
2t a
= a since |e |< i
l-e
That is
a
m === -
1 e-a-l
Solving for L , we obtain
ea
Lga-tlog(l + — ).
H
ea
Llet @(a) =a -t log(l + — ) so that
Al
(6) L < ¢(a) for some a , L< a0,
or L < max gla) .
L<ag0

-16-



Note that

¢'(a) =1 - :
e p,l+ 1
and
§'(@) = Lt
"a < 0
(e, + 117

Since @"(a) < 0 , we know that Q(a) 1s strictly concave and hence

it has a maxima, say, at @ = a¥,

Thus, from (6) we have,

(7) L < plo*)

so it remains to obtain a* , o* can be found by equating @'(a)

to zero; that is

This gives us,
!
o* = log( t—-.l._) for

Note that for t < Wy o

t
¢'(o)-l-u1+l>o.
Also we have
g"(a) < 0 for any «

-17-
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Thus, for t <, , ve have @'(a) > 0 and ¢"(ax) ¢ 0 which shows

that 0 1is strictly increasing concave function and hence the

maximum of @(a) is achieved at the origin,
That 1is

(8) o

| if t(u1
a¥ a (

Llog( t%— )

Using (8), the expression in (7) becomes,

if t 2y

[ 8(0) 1t
Lg < 9
¢[108(E-_—i-)] if &2
or m t
los(ﬁl) 1ty
Lg <

los[(t—L_lll-)(t—;L)H 1 t2p .

But L = log F(t) , so finally we have

(9)

Hy b
(“?1—) if ¢t < ul
F(t) ¢ <

lﬂ-ll l*ul ; k=0,1,2,,.. and for




t >, equality in (9) is attained by the geometric distribution

n
t-1

given by (9) are sharp.

- t-1l.k
G where G(k) = ( )(—t-) ; k= 1,2,,,, . Hence, the inequalities

2.3 Comparison of the Continuous and Lattice Bounds:

Comparing Theorem 1 and Theorem 2, we remark that for b
fixed, the continuous upper bound is everywhere smaller than the
lattice upper bound., Similar comparisions hold for Theorem 5 and

Theorem 6.

-19-




3, Application of Bounds

3,1 Motivation to Life Table Analysis:

We note that the failure rate function, r(t) 1is familiar
in other branches of science and is known by a variety of names,

In the 1life sciences it 1s used by actuaries under the name of
"Force of Mortality" to compute mortalitv tables [15]. The important
work of life table analysis 1is to caiculate survival rate, {i.e,,
the proportion cof persons surviving a specified interval of time,
Various methods for calculating survival rate have been discussed
in several research papers by Ederer (7]; Ederer, Cutler and Axtell
(8], Berkson and Gege [4], etc. Some functions that have been
used to define the force of mortality are Gompertz's formula and
Makeham's formula., A detailed discussion concerning the estimation
of the parameters in Makeham's law of mortality can be found in
Grenander's paper [9].

Grenander remarks in his paper that we should specify carefully
the probability assumptions to be used in mortality studies, The
basic assumption is that our data forms a sample of independent
observations cf stochastic variables, with the same probability
distribution except when sampling errors are serious, Further
Grenander remarks in his paper that mortality estimates will be
used to compute premiums, reserves and so on, and 1t is the future
mortality that is of interest for making a prognosis for several
decades forward in time, Since the development of the mortality
depends upon factors that are very difficult to handle, it is likely

that only a rough prognosis can be made,
-20-



We are interested in giving upper bounds on survival probability
which will be useful in the life sciences in order to compare
mortality rates in different populationg, To give such bounds,
which can be used for all ages, we need to have some a priori
information about the failure rate function such as IFR cr DFR, as

we shall see in a cancer study.

5,2 Application of bounds to a cancer study.

Patient survival 1s generally accepted as the principal criterion
for measuring the effectiveness of treatment in cancer, The American
College of Surgeons requires the maintenance of a cancer registration
and follow up program for approval of a hospital cancer program, We
shall investigate a particular type of cancer from a large number of
cancer studies given in (6] in order to apply the bounde,

We are interested in giving upper bounds for the survival
probability (also called survival rate)., Data of table 1 is taken
from [6, p. 316], which represents tke cbserved survival rates
for breast and genito-urinary organs cancer for the period 1942-56
of both sexes, For this particular type of caucer there were 41,157
patients at the beginning of the year 1942. The observed survival
rates were calculated by the usual formula and is shcwn in Table 1,

Our aim is to use this data to give an upper bound for the

survival rate and to extend it for all ages.



TABLE - 1

Observed Survival Rates,
Breast and Genito-Urinary Organs Cancer,
Detailed Sites Hy ALl Ages, 1942 - 1956, Both Sexes,

Years after Observed Survival Difference
diagnosis, rates 1thercentage. R . .
t F(t) Log F(t) LogeF( t+l )-Logel?(t )
0 100,0 4, 60517 - 0. 33407
1 71.6 4, 27110 - 0.18849
2 59. % L4, 08261 - 0,13715
3 51.7 3,94546 - 0,11682
I 46,0 3,80864 - 0,09814
p L1.7 3. 73050 - 0.09291
6 38,0 3,63759 - 0,08724
7 35.0 3.55535 - 0.07719
8 32,4 3, 47816 - 0,07696
9 30,0 3, L0120 - 0.07616
10 27.8 3, 32504 - 0.07080
1 25.9 3, 25424 - 0.06789
12 24,2 3,18635 - 0,07283
13 22.5 3,11352 - 0.06425
14 2.1 3, 04927 - 0.05354
1.5 20.0 &99973  =e=sese

&
Since successive differences of the function LogeF(t) are
increasing in t except at t = 12 , we can assume that the successive
differences of the function Logef(t) are increasing in t for all

&
values of t . The graph of the function Log.F(t) 1s shown in

Figure 3,1.
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a
From successive differences of the function logeF(t) and from

the graph it is clear that logef(t) i8 convex and therefore we claim
that F 1s DFR,

Now we shall obtain upper bounds for 1l-F using Theorem 5 and

Theorem 6 and compare them,
We need to estimate by s the mean of F , Let ﬁl denote an

estimate of by Thus,

ﬁl- i F(t)
t=l
14 o
- ) T ) R
t=l t> 1k

o u]'.-o-ul,say.

From the data of Table 1, we have

L
b = t F(t) = 527.2 ,

tml

Hence, it remains to celculate u{ . From the graph of the function
a -
logeF(t) it 1s clear that for t > 8 , F(t) has an exponential form

and therefore, u{ can be approximated by

00

e ) T

t> 14

o0
= J[ g (x)dx where g(x) 1s an exponential curve,
1h

Let g(x) = ce-a(x-lh) for x > 14,

So, 1ogeg(x) = log c - a(x-14) implies logec is equal to the height at
-2k -



x =14 and -a 1s the slope of the curve logeg(x) . This gives

¢c =2l,1 and an estimate of -a 18 given by

Losef(9) - log F(12)

-8 = 9 ~ 10 . - 0.07162 .
Heuce,
L - f (21.1)e°'°7162("'l'*)dx
1 1k
* 0.07162
= (21.1)J[‘ e dy
0
= 2946,

Finally, we obtain

), = 527.2 + 294.6
= 821.8

A

or ul = 8,218 years .

Using an estimate of the mean of F as 8,218, we shall

calculate upper bounds for 1l-F in Table 2,

-25-
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TABLE - 2

Upper Bounds on Survival Rate,

R

Years after Observed survival Upper bounds on F(t) Upper bounds on F(t)

diagnosis, rates in % ., using Th, 6 in % ., using Th, 5in %,

£ ?(t)
0 100, 0 100,00 100, 00
1 1.6 89.15 88. 54
2 59.3 T9. 47 78. 37
3 SIS 70,85 69. 42
" 46,0 63.16 61,47
5 41,7 56. 31 54, 42
6 38.0 50. 20 48,19
{ il 35,0 Lis, 75 42,66
| 8 32,4 19,89 37.78
8.218 - N 38,94 36,79

(By Interpclation)

9 30,0 35,55 33, 58
10 27.8 31,80 30, 23
11 25.9 28.79 27.48
12 2k, 2 26.29 25,18
13 22,5 24,16 23,2k
14 21,1 22,39 21.58
15 20,0 20.82 20,13

From the last two columns we observe that the upper bounds on
f(t) obtained by Theorem 6 are everywhere larger than those obtained

by Theorem 5. These bounds can be compared graphically as shown in

Figure 3,2 and Figure 3, 3,

-26-
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These results on bounds are of particular interest in comparing
the mortality in different populations, when a priori information about
the mortality function is known,

Suppose we are interested in comparing the survival rates of
two types of cancer, say, stomach and lung. Let us assume that both
have decreasing failure rate with mean My and u2 respectively, We note
that one of the means 1s greater than the osther say, LH_} u2 . Also
note theo, the estimate of the means can be found by studying smaple
information. Using Theorem 6, we can find upper bounds on survival
rates for bnth stcmach and lung cancer, Then, by comparing the upper
bounds ¢ ftomach and lung cancer, we can estimate the greatest difference

in survival ruate for different periods.

3,3 Application of bounds to reliability theory:

In reliatil ‘ty theory, a decreasing failure rate would seem
to correspond to same physical mechanism of improvement with age,
so that the lcpger the unit survives the less the chance of failure
in the next unit of time., We will discuss the reliability problem
given in [13) by establishing the upper bound,

Proschan was interested in obtaining information as to the
distribution of failure intervals for the air conditioning system
of each member of a fleet of Boeing 720 jet airplanes [13]. Records
were kept for the time of successive failures (to the nearest hour)
of the air conditioning system [13, p. 316].

First we note that it was proved in [13] that the failure distribution
formed by pooling failure intervals tor a given component operating
in different types of equipment would be DFR, Thus, we know that

the data follows a DFR distribution and hence we will give an
-29-
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upper bound on survival probability using Theorem 6, We remark that
an estimate of the parent mean can be estimated by sample information
and it was found in [13] that the mean of all the failure 1ﬁtervals
was 93,14, Since the sample size is large, this estimate should be
fairly accurate, Using 93.1L4 as an estimate of the pareat mean,
we give theoretical upper bound for the pooled data.

Figure 3,4 shows the upper bounds on survival probability,
The cross-over in the beginning for the observed survival probability

may be due to random fluctuation,

-
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